Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 348
Filtrar
1.
Biochem Pharmacol ; : 116189, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38580165

RESUMO

Previous research has demonstrated therapeutic potential for VMAT2 inhibitors in rat models of methamphetamine use disorder. Here, we report on the neurochemical and behavioral effects of 1-(2-methoxyphenethyl)-4-phenethypiperazine (JPC-141), a novel analog of lobelane. JPC-141 potently inhibited (Ki = 52 nM) [3H]dopamine uptake by VMAT2 in striatal vesicles with 50 to 250-fold greater selectivity for VMAT2 over dopamine, norepinephrine and serotonin plasmalemma transporters. Also, JPC-141 was 57-fold more selective for inhibiting VMAT2 over [3H]dofetilide binding to hERG channels expressed by HEK293, suggesting relatively low potential for cardiotoxicity. When administered in vivo to rats, JPC-141 prevented the METH-induced reduction in striatal dopamine content when given either prior to or after a high dose of METH, suggesting a reduction in METH-induced dopaminergic neurotoxicity. In behavioral assays, JPC-141 decreased METH-stimulated locomotor activity in METH-sensitized rats at doses of JPC-141 which did not alter locomotor activity in the saline control group. Moreover, JPC-141 specifically decreased iv METH self-administration at doses that had no effect on food-maintained responding. These findings support the further development of VMAT2 inhibitors as pharmacotherapies for individuals with methamphetamine use disorder.

2.
Pharmaceuticals (Basel) ; 16(10)2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37895969

RESUMO

Chronic, low-grade inflammation has been implicated in aging and age-dependent conditions, including Alzheimer's disease, cardiomyopathy, and cancer. One of the age-associated processes underlying chronic inflammation is protein aggregation, which is implicated in neuroinflammation and a broad spectrum of neurodegenerative diseases such as Alzheimer's, Huntington's, and Parkinson's diseases. We screened a panel of bioactive thiadiazolidinones (TDZDs) from our in-house library for rescue of protein aggregation in human-cell and C. elegans models of neurodegeneration. Among the tested TDZD analogs, PNR886 and PNR962 were most effective, significantly reducing both the number and intensity of Alzheimer-like tau and amyloid aggregates in human cell-culture models of pathogenic aggregation. A C. elegans strain expressing human Aß1-42 in muscle, leading to AD-like amyloidopathy, developed fewer and smaller aggregates after PNR886 or PNR962 treatment. Moreover, age-progressive paralysis was reduced 90% by PNR886 and 75% by PNR962, and "healthspan" (the median duration of spontaneous motility) was extended 29% and 62%, respectively. These TDZD analogs also extended wild-type C. elegans lifespan by 15-30% (p < 0.001), placing them among the most effective life-extension drugs. Because the lead drug in this family, TDZD-8, inhibits GSK3ß, we used molecular-dynamic tools to assess whether these analogs may also target GSK3ß. In silico modeling predicted that PNR886 or PNR962 would bind to the same allosteric pocket of inactive GSK3ß as TDZD-8, employing the same pharmacophore but attaching with greater avidity. PNR886 and PNR962 are thus compelling candidate drugs for treatment of tau- and amyloid-associated neurodegenerative diseases such as AD, potentially also reducing all-cause mortality.

3.
Sci Rep ; 13(1): 11703, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37474512

RESUMO

Biocompatibility and the ability to mediate the appropriate flux of ions, urea, and uremic toxins between blood and dialysate components are key parameters for membranes used in dialysis. Oxone-mediated TEMPO-oxidized cellulose nanomaterials have been demonstrated to be excellent additives in the production and tunability of ultrafiltration and dialysis membranes. In the present study, nanocellulose ionic liquid membranes (NC-ILMs) were tested in vitro and ex vivo. An increase in flux of up to two orders of magnitude was observed with increased rejection (about 99.6%) of key proteins compared to that of polysulfone (PSf) and other commercial membranes. NC-ILMs have a sharper molecular weight cut-off than other phase inversion polymeric membranes, allowing for high throughput of urea and a uremic toxin surrogate and limited passage of proteins in dialysis applications. Superior anti-fouling properties were also observed for the NC-ILMs, including a > 5-h operation time with no systemic anticoagulation in blood samples. Finally, NC-ILMs were found to be biocompatible in rat ultrafiltration and dialysis experiments, indicating their potential clinical utility in dialysis and other blood filtration applications. These superior properties may allow for a new class of membranes for use in a wide variety of industrial applications, including the treatment of patients suffering from renal disease.


Assuntos
Diálise Renal , Toxinas Biológicas , Ratos , Animais , Ultrafiltração , Soluções para Diálise , Proteínas , Membranas Artificiais , Ureia
4.
Front Pharmacol ; 14: 1123261, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229250

RESUMO

Introduction: An active metabolite of buprenorphine (BUP), called norbuprenorphine (NorBUP), is implicated in neonatal opioid withdrawal syndrome when BUP is taken during pregnancy. Therefore, reducing or eliminating metabolism of BUP to NorBUP is a novel strategy that will likely lower total fetal exposure to opioids and thus improve offspring outcomes. Precision deuteration alters pharmacokinetics of drugs without altering pharmacodynamics. Here, we report the synthesis and testing of deuterated buprenorphine (BUP-D2). Methods: We determined opioid receptor affinities of BUP-D2 relative to BUP with radioligand competition receptor binding assays, and the potency and efficacy of BUP-D2 relative to BUP to activate G-proteins via opioid receptors with [35S]GTPγS binding assays in homogenates containing the human mu, delta, or kappa opioid receptors. The antinociceptive effects of BUP-D2 and BUP were compared using the warm-water tail withdrawal assay in rats. Blood concentration versus time profiles of BUP, BUP-D2, and NorBUP were measured in rats following intravenous BUP-D2 or BUP injection. Results: The synthesis provided a 48% yield and the product was ≥99% deuterated. Like BUP, BUP-D2 had sub-nanomolar affinity for opioid receptors. BUP-D2 also activated opioid receptors and induced antinociception with equal potency and efficacy as BUP. The maximum concentration and the area under the curve of NorBUP in the blood of rats that received BUP-D2 were over 19- and 10-fold lower, respectively, than in rats that received BUP. Discussion: These results indicate that BUP-D2 retains key pharmacodynamic properties of BUP and resists metabolism to NorBUP and therefore holds promise as an alternative to BUP.

5.
Front Toxicol ; 4: 936149, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36591540

RESUMO

Hepatocellular carcinoma (HCC) is both a devastating and common disease. Every year in the United States, about 24,500 men and 10,000 women are diagnosed with HCC, and more than half of those diagnosed patients die from this disease. Thus far, conventional therapeutics have not been successful for patients with HCC due to various underlying comorbidities. Poor survival rate and high incidence of recurrence after therapy indicate that the differences between the redox environments of normal surrounding liver and HCC are valuable targets to improve treatment efficacy. Parthenolide (PTL) is a naturally found therapeutic with anti-cancer and anti-inflammatory properties. PTL can alter HCC's antioxidant environment through thiol modifications leaving tumor cells sensitive to elevated reactive oxygen species (ROS). Investigating the link between altered thiol mechanism and increased sensitivity to iron-mediated lipid peroxidation will allow for improved treatment of HCC. HepG2 (human) and McARH7777 (rat) HCC cells treated with PTL with increasing concentrations decrease cell viability and clonogenic efficiency in vitro. PTL increases glutathione (GSH) oxidation rescued by the addition of a GSH precursor, N-acetylcysteine (NAC). In addition, this elevation in thiol oxidation results in an overall increase in mitochondrial dysfunction. To elucidate if cell death is through lipid peroxidation, using a lipid peroxidation sensor indicated PTL increases lipid oxidation levels after 6 h. Additionally, western blotting reveals glutathione peroxidase 4 (GPx4) protein levels decrease after treatment with PTL suggesting cells are incapable of preventing lipid peroxidation after exposure to PTL. An elevation in lipid peroxidation will lead to a form of cell death known as ferroptosis. To further establish ferroptosis as a critical mechanism of death for HCC in vitro, the addition of ferrostatin-1 combined with PTL demonstrates a partial recovery in a colony survival assay. This study reveals that PTL can induce tumor cell death through elevations in intracellular oxidation, leaving cells sensitive to ferroptosis.

6.
Front Neurosci ; 15: 754585, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34970112

RESUMO

Stimulation of cholinergic efferent neurons innervating the inner ear has profound, well-characterized effects on vestibular and auditory physiology, after activating distinct ACh receptors (AChRs) on afferents and hair cells in peripheral endorgans. Efferent-mediated fast and slow excitation of vestibular afferents are mediated by α4ß2*-containing nicotinic AChRs (nAChRs) and muscarinic AChRs (mAChRs), respectively. On the auditory side, efferent-mediated suppression of distortion product otoacoustic emissions (DPOAEs) is mediated by α9α10nAChRs. Previous characterization of these synaptic mechanisms utilized cholinergic drugs, that when systemically administered, also reach the CNS, which may limit their utility in probing efferent function without also considering central effects. Use of peripherally-acting cholinergic drugs with local application strategies may be useful, but this approach has remained relatively unexplored. Using multiple administration routes, we performed a combination of vestibular afferent and DPOAE recordings during efferent stimulation in mouse and turtle to determine whether charged mAChR or α9α10nAChR antagonists, with little CNS entry, can still engage efferent synaptic targets in the inner ear. The charged mAChR antagonists glycopyrrolate and methscopolamine blocked efferent-mediated slow excitation of mouse vestibular afferents following intraperitoneal, middle ear, or direct perilymphatic administration. Both mAChR antagonists were effective when delivered to the middle ear, contralateral to the side of afferent recordings, suggesting they gain vascular access after first entering the perilymphatic compartment. In contrast, charged α9α10nAChR antagonists blocked efferent-mediated suppression of DPOAEs only upon direct perilymphatic application, but failed to reach efferent synapses when systemically administered. These data show that efferent mechanisms are viable targets for further characterizing drug access in the inner ear.

7.
Int J Mol Sci ; 22(19)2021 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-34639060

RESUMO

Glioblastoma (GBM) is highly resistant to treatment and invasion into the surrounding brain is a cancer hallmark that leads to recurrence despite surgical resection. With the emergence of precision medicine, patient-derived 3D systems are considered potentially robust GBM preclinical models. In this study, we screened a library of 22 anti-invasive compounds (i.e., NF-kB, GSK-3-B, COX-2, and tubulin inhibitors) using glioblastoma U-251 MG cell spheroids. We evaluated toxicity and invasion inhibition using a 3D Matrigel invasion assay. We next selected three compounds that inhibited invasion and screened them in patient-derived glioblastoma organoids (GBOs). We developed a platform using available macros for FIJI/ImageJ to quantify invasion from the outer margin of organoids. Our data demonstrated that a high-throughput invasion screening can be done using both an established cell line and patient-derived 3D model systems. Tubulin inhibitor compounds had the best efficacy with U-251 MG cells, however, in ex vivo patient organoids the results were highly variable. Our results indicate that the efficacy of compounds is highly related to patient intra and inter-tumor heterogeneity. These results indicate that such models can be used to evaluate personal oncology therapeutic strategies.


Assuntos
Bancos de Espécimes Biológicos , Neoplasias Encefálicas/patologia , Descoberta de Drogas , Glioblastoma/patologia , Organoides , Medicina de Precisão , Antineoplásicos/farmacologia , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Descoberta de Drogas/métodos , Ensaios de Seleção de Medicamentos Antitumorais/métodos , Glioblastoma/tratamento farmacológico , Humanos , Invasividade Neoplásica , Medicina de Precisão/métodos , Esferoides Celulares , Técnicas de Cultura de Tecidos
8.
Eur J Med Chem ; 224: 113675, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34229108

RESUMO

Melampomagnolide B (MMB, 3) is a parthenolide (PTL, 1) based sesquiterpene lactone that has been used as a template for the synthesis of a plethora of lead anticancer agents owing to its reactive C-10 primary hydroxyl group. Such compounds have been shown to inhibit the IKKß subunit, preventing phosphorylation of the cytoplasmic IκB inhibitory complex. The present study focuses on the synthesis and in vitro antitumor properties of novel benzyl and phenethyl carbamates of MMB (7a-7k). Screening of these MMB carbamates identified analogs with potent growth inhibition properties against a panel of 60 human cancer cell lines (71% of the molecules screened had GI50 values < 2 µM). Two analogs, the benzyl carbamate 7b and the phenethyl carbamate7k, were the most active compounds. Lead compound 7b inhibited cell proliferation in M9 ENL AML cells, and in TMD-231, OV-MD-231 and SUM149 breast cancer cell lines. Interestingly, mechanistic studies showed that 7b did not inhibit p65 phosphorylation in M9 ENL AML and OV-MD-231 cells, but did inhibit phophorylation of both p65 and IκBα in SUM149 cells. 7b also reduced NFκB binding to DNA in both OV-MD-231 and SUM149 cells. Molecular docking studies indicated that 7b and 7k are both predicted to interact with the ubiquitin-like domain (ULD) of the IKKß subunit. These data suggest that in SUM149 cells, 7b is likely acting as an allosteric inhibitor of IKKß, whereas in M9 ENL AML and OV-MD-231 cells 7b is able to inhibit an event after IκB/p65/p50 phosphorylation by IKKß that leads to inhibition of NFκB activation and reduction in NFκB-DNA binding. Analog 7b was by far the most potent compound in either carbamate series, and was considered an important lead compound for further optimization and development as an anticancer agent.


Assuntos
Antineoplásicos/química , NF-kappa B/antagonistas & inibidores , Sesquiterpenos/química , Antineoplásicos/metabolismo , Antineoplásicos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Lactonas/química , Simulação de Acoplamento Molecular , NF-kappa B/química , NF-kappa B/metabolismo , Fosforilação/efeitos dos fármacos , Domínios Proteicos , Sesquiterpenos/metabolismo , Sesquiterpenos/farmacologia , Relação Estrutura-Atividade , Termodinâmica , Fator de Transcrição RelA/metabolismo
9.
Bioorg Med Chem ; 45: 116311, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34304133

RESUMO

A series of novel 2-hydroxybenzylamine-deoxyvasicinone hybrid analogs (8a-8n) have been synthesized and evaluated as inhibitors of acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), and as inhibitors of amyloid peptide (Aß1-42) aggregation, for treatment of Alzheimer's disease (AD). These dual acting compounds exhibited good AChE inhibitory activities ranging from 0.34 to 6.35 µM. Analogs8g and 8n were found to be the most potent AChE inhibitors in the series with IC50values of 0.38 µM and 0.34 µM, respectively. All the analogs (8a-8n) exhibited weak BuChE inhibitory activities ranging from 14.60 to 21.65 µM. Analogs8g and 8n exhibited BuChE with IC50values of 15.38 µM and 14.60 µM, respectively, demonstrating that these analogs were greater than 40-fold more selective for inhibition of AChE over BuChE. Additionally, compounds8g and 8n were also found to be the best inhibitors of self-induced Aß1-42 peptide aggregation with IC50values of 3.91 µM and 3.22 µM, respectively; 8g and 8n also inhibited AChE-induced Aß1-42 peptide aggregation by 68.7% and 72.6%, respectively. Kinetic analysis and molecular docking studies indicate that analogs 8g and 8n bind to a new allosteric pocket (site B) on AChE. In addition, the observed inhibition of AChE-induced Aß1-42 peptide aggregation by 8n is likely due to allosteric inhibition of the binding of this peptide at the CAS site on AChE. Overall, these results indicate that 8g and 8n are examples of dual-acting lead compounds for the development of highly effective anti-AD drugs.


Assuntos
Alcaloides/farmacologia , Doença de Alzheimer/tratamento farmacológico , Benzilaminas/farmacologia , Inibidores da Colinesterase/farmacologia , Fármacos Neuroprotetores/farmacologia , Acetilcolinesterase/metabolismo , Alcaloides/química , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/antagonistas & inibidores , Peptídeos beta-Amiloides/metabolismo , Animais , Benzilaminas/química , Butirilcolinesterase/metabolismo , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/química , Relação Dose-Resposta a Droga , Electrophorus , Cavalos , Humanos , Estrutura Molecular , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/metabolismo , Agregados Proteicos/efeitos dos fármacos , Relação Estrutura-Atividade
10.
JCSM Rapid Commun ; 4(1): 24-39, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33842876

RESUMO

BACKGROUND: Loss of skeletal muscle volume and resulting in functional limitations are poor prognostic markers in breast cancer patients. Several molecular defects in skeletal muscle including reduced MyoD levels and increased protein turn over due to enhanced proteosomal activity have been suggested as causes of skeletal muscle loss in cancer patients. However, it is unknown whether molecular defects in skeletal muscle are dependent on tumor etiology. METHODS: We characterized functional and molecular defects of skeletal muscle in MMTV-Neu (Neu+) mice (n= 6-12), an animal model that represents HER2+ human breast cancer, and compared the results with well-characterized luminal B breast cancer model MMTV-PyMT (PyMT+). Functional studies such as grip strength, rotarod performance, and ex vivo muscle contraction were performed to measure the effects of cancer on skeletal muscle. Expression of muscle-enriched genes and microRNAs as well as circulating cytokines/chemokines were measured. Since NF-κB pathway plays a significant role in skeletal muscle defects, the ability of NF-κB inhibitor dimethylaminoparthenolide (DMAPT) to reverse skeletal muscle defects was examined. RESULTS: Neu+ mice showed skeletal muscle defects similar to accelerated aging. Compared to age and sex-matched wild type mice, Neu+ tumor-bearing mice had lower grip strength (202±6.9 vs. 179±6.8 g grip force, p=0.0069) and impaired rotarod performance (108±12.1 vs. 30±3.9 seconds, P<0.0001), which was consistent with reduced muscle contractibility (p<0.0001). Skeletal muscle of Neu+ mice (n=6) contained lower levels of CD82+ (16.2±2.9 vs 9.0±1.6) and CD54+ (3.8±0.5 vs 2.4±0.4) muscle stem and progenitor cells (p<0.05), suggesting impaired capacity of muscle regeneration, which was accompanied by decreased MyoD, p53 and miR-486 expression in muscles (p<0.05). Unlike PyMT+ mice, which showed skeletal muscle mitochondrial defects including reduced mitochondria levels and Pgc1ß, Neu+ mice displayed accelerated aging-associated changes including muscle fiber shrinkage and increased extracellular matrix deposition. Circulating "aging factor" and cachexia and fibromyalgia-associated chemokine Ccl11 was elevated in Neu+ mice (1439.56±514 vs. 1950±345 pg/ml, p<0.05). Treatment of Neu+ mice with DMAPT significantly restored grip strength (205±6 g force), rotarod performance (74±8.5 seconds), reversed molecular alterations associated with skeletal muscle aging, reduced circulating Ccl11 (1083.26 ±478 pg/ml), and improved animal survival. CONCLUSIONS: These results suggest that breast cancer subtype has a specific impact on the type of molecular and structure changes in skeletal muscle, which needs to be taken into consideration while designing therapies to reduce breast cancer-induced skeletal muscle loss and functional limitations.

11.
Toxicol Rep ; 8: 359-364, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33665133

RESUMO

Previous studies have demonstrated that the bone targeting agent BT2-peg2 (BT2-minipeg2, 9), when conjugated to vancomycin and delivered systemically by intravenous (IV) or intraperitoneal (IP) injection accumulates in bone to a greater degree than vancomycin alone, but that this accumulation is associated with severe nephrotoxicity. To determine whether this nephrotoxicity could be attributed to BT2-peg2 itself, we used a rat model to assess the distribution and toxicity of BT2-peg2 after IP injection of 11 mg/kg twice daily for 21 days. The results demonstrated that BT2-peg2 accumulates in bone but there was no evidence of nephrotoxicity or any histopathological abnormalities in the bone. This suggests the nephrotoxicity observed in previous studies is likely due to the altered pharmacokinetics of vancomycin when conjugated to BT2-peg2 rather than to BT2-peg2 itself. Thus, BT2-peg2 may be a safe carrier for the enhanced delivery of antibiotics other than vancomycin to the bone as a means of combating bone infection. However, the data also emphasizes the need to carefully examine the pharmacokinetic characteristics of any BT2-peg2-antibiotic conjugate utilized for treatment of bone infections.

12.
Drug Dev Res ; 82(6): 802-814, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33427316

RESUMO

Morphine-6-O-sulfate (M6S), a polar, zwitterionic sulfate ester of morphine, is a powerful and safe analgesic in several rat models of pain. A sensitive liquid chromatography-tandem mass spectrometry bioanalytical method was developed and validated for the simultaneous determination of M6S and morphine (MOR) in rat plasma and brain after M6S administration. Morphine-d6 was used as internal standard. Multiple reaction monitoring was used for detection and quantitation of M6S, MOR, and morphine-d6 in the turbo ion spray positive mode. The chromatographic separation was carried out on an Alltech Altima C18 column. The analytical method was validated for linearity, precision, accuracy, specificity, and stability over a concentration range of 3-8000 ng/ml in rat plasma and 10-10,000 ng/ml in brain samples for both M6S and MOR. The validated method was applied to determine the PK profile of M6S in plasma after i.v., i.p., and oral dosing in male Sprague-Dawley rats. Rats were administered M6S by i.p. administration (5.6 and 10.0 mg/kg) or orally (10 and 30 mg/kg) and bioavailability compared to an i.v. injection (1 mg/kg) of M6S. The in vivo results indicate that M6S is not a prodrug of morphine, since M6S is not biotransformed into MOR in plasma after either i.p. or oral administration, and MOR was not detected in brain. The bioavailability of M6S was >93% and about 5% after i.p. and oral dosing, respectively. The low oral bioavailability of M6S may be due to poor permeation of the intestinal epithelial membrane. After i.p.-administration, M6S appears to reach brain tissues in low, but significant, concentrations.


Assuntos
Derivados da Morfina , Morfina , Animais , Encéfalo , Masculino , Derivados da Morfina/química , Ratos , Ratos Sprague-Dawley
13.
Niger J Physiol Sci ; 36(1): 57-65, 2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34987247

RESUMO

This study evaluates the therapeutic potentials of selected antihypertensive drugs [valsartan, amlodipine, lisinopril and their fixed-dose combinations (amlodipine + lisinopril) and (valsartan + lisinopril)] in ameliorating trastuzumab (TZM)­induced cardiac dysfunctions in experimental rats. After an ethical clearance for the study was obtained, in-bred young adult female Wistar rats were randomly allotted into 10 groups of 6 rats per group. Group I rats were treated with 10 ml/kg/day sterile water p.o. and 1 ml/kg/day sterile water i.p.; Group II, III and IV rats were orally treated with 5 mg/kg/day VAL and 1 ml/kg/day sterile water i.p., 0.25 mg/kg/day ADP and 1 ml/kg/day sterile water i.p., 0.035 mg/kg/day LSP and 1 ml/kg/day sterile water i.p., respectively. Group V rats were orally pretreated with 10 ml/kg/day of sterile water before i.p. 2.25 mg/kg/day of TZM. Groups VI-VIII rats were equally pretreated with 5 mg/kg/day VAL, 0.25 mg/kg/day ADP, and 0.035 mg/kg/day LSP before i.p. 2.25 mg/kg/day TZM treatment, respectively. Also, Groups IX and X rats were orally pretreated with the fixed-dose combinations of 0.25 mg/kg/day ADP + 0.035 mg/kg/day LSP in dissolved in sterile water and 5 mg/kg/day VAL + 0.035 mg/kg/day LSP before 2.25 mg/kg/day TZM treatment for 7 days. Blood pressure parameters [systolic blood pressure (SBP), diastolic blood pressure (DBP) and mean arterial blood pressure (MAP)] and electrocardiogram (ECG) of the treated rats were measured using non-invasive procedures on days 1 and 7 of the experiment, following which the treated rats were sacrificed humanely under light inhaled diethyl ether and histopathological examination was conducted on all treated rat hearts. Results show that repeated TZM treatment significantly (p<0.05) raised SBP, DBP and MAP values from 115.0 ± 17.1 mmHg, 85.1 ± 15.1 mmHg     and      94.7 ± 15.5 mmHg, respectively on day 1      to 127.7 ± 27.8 mmHg, 87.4 ± 27.3 mmHg       and 100.5 ± 26.4 mmHg, respectively, on day 7. Oral pretreatments with VAL, ADP, LSP and their fixed-dose combinations significantly (p<0.05) attenuated increases in the SBP, DBP and MAP values with the most significant attenuation mediated by the fixed-dose VAL + LSP combination at the SBP, DBP and MAP values of 103.8 ± 20.6        mmHg, 65.5 ± 18.8 mmHg, and 77.9 ± 18.7 mmHg, respectively. TZM treatment also profoundly (p<0.05) prolonged the QT and corrected QT intervals from 85.0 ± 11.5 ms and         161.6 ± 20.3 ms, respectively, on day 1 to 110.2 ± 21.5 ms and 226.5 ± 41.5 ms, respectively, on day 7. However, these QT and corrected QT interval prolongations were effectively and profoundly attenuated by oral pretreatments with VAL, ADP, LSP and their fixed-dose combinations. In addition, TZM cardiotoxicity was characterized by marked vascular and cardiomyocyte congestion and coronary artery microthrombi formation. However, these histopathological changes were reversed with oral pretreatments with ADP, LSP, VAL and fixed-dosed [(ADP + LSP) and (VAL + LSP)] combinations although fixed-dose VAL + LSP was associated with histopathological lesions of coronary arterial wall cartilaginous metaplasia. Overall, this study revealed the promising therapeutic potentials of VAL, ADP, LSP and their fixed-dose combinations as repurposed drugs for the prevention of TZM-mediated cardiac dysfunctions.


Assuntos
Anti-Hipertensivos , Cardiopatias , Hipertensão , Trastuzumab/efeitos adversos , Animais , Anti-Hipertensivos/farmacologia , Pressão Sanguínea , Combinação de Medicamentos , Feminino , Cardiopatias/induzido quimicamente , Cardiopatias/tratamento farmacológico , Hipertensão/induzido quimicamente , Hipertensão/tratamento farmacológico , Ratos , Ratos Wistar
14.
Cancer Lett ; 500: 220-227, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33358698

RESUMO

The ability of chemo-radiation therapy to control locally advanced stage III non-small cell lung cancer (NSCLC) is poor. While addition of consolidation immunotherapy has improved outcomes in subsets of patients there is still an urgent need for new therapeutic targets. Emerging research indicates that nucleophosmin1 (NPM1) is over-expressed in NSCLC, promotes tumor growth and that over-expression correlates with a lower survival probability. NPM1 is critical for APE1 base excision activity and for RAD51-mediated repair of DNA double strand breaks (DSBs). YTR107 is a small molecule radiation sensitizer that has been shown to bind to NPM1, suppressing pentamer formation. Here we show that in irradiated cells YTR107 inhibits SUMOylated NPM1 from associating with RAD51, RAD51 foci formation and repair of DSBs. YTR107 acts synergistically with the PARP1/2 inhibitor ABT 888 to increase replication stress and radiation-induced cell lethality. YTR107 was found to radiosensitize tumor initiating cells. Congruent with this knowledge, adding YTR107 to a fractionated irradiation regimen diminished NSCLC xenograft growth and increased overall survival. These data support the hypothesis that YTR107 represents a therapeutic target for control of NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/radioterapia , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , Proteínas Nucleares/genética , Rad51 Recombinase/genética , Barbitúricos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Reparo do DNA/efeitos dos fármacos , Reparo do DNA/efeitos da radiação , Humanos , Indóis/farmacologia , Recidiva Local de Neoplasia/tratamento farmacológico , Recidiva Local de Neoplasia/genética , Recidiva Local de Neoplasia/patologia , Recidiva Local de Neoplasia/radioterapia , Nucleofosmina , Poli(ADP-Ribose) Polimerase-1/antagonistas & inibidores , Poli(ADP-Ribose) Polimerase-1/genética , Tolerância a Radiação/efeitos dos fármacos , Radiossensibilizantes/farmacologia , Sumoilação/efeitos dos fármacos , Sumoilação/efeitos da radiação
15.
Sci Rep ; 10(1): 18326, 2020 10 27.
Artigo em Inglês | MEDLINE | ID: mdl-33110096

RESUMO

Glycogen synthase kinase-3ß (GSK3ß) controls many physiological pathways, and is implicated in many diseases including Alzheimer's and several cancers. GSK3ß-mediated phosphorylation of target residues in microtubule-associated protein tau (MAPTAU) contributes to MAPTAU hyperphosphorylation and subsequent formation of neurofibrillary tangles. Inhibitors of GSK3ß protect against Alzheimer's disease and are therapeutic for several cancers. A thiadiazolidinone drug, TDZD-8, is a non-ATP-competitive inhibitor targeting GSK3ß with demonstrated efficacy against multiple diseases. However, no experimental data or models define the binding mode of TDZD-8 with GSK3ß, which chiefly reflects our lack of an established inactive conformation for this protein. Here, we used metadynamic simulation to predict the three-dimensional structure of the inactive conformation of GSK3ß. Our model predicts that phosphorylation of GSK3ß Serine9 would hasten the DFG-flip to an inactive state. Molecular docking and simulation predict the TDZD-8 binding conformation of GSK3ß to be inactive, and are consistent with biochemical evidence for the TDZD-8-interacting residues of GSK3ß. We also identified the pharmacophore and assessed binding efficacy of second-generation TDZD analogs (TDZD-10 and Tideglusib) that bind GSK3ß as non-ATP-competitive inhibitors. Based on these results, the predicted inactive conformation of GSK3ß can facilitate the identification of novel GSK3ß inhibitors of high potency and specificity.


Assuntos
Glicogênio Sintase Quinase 3 beta/química , Tiadiazóis/metabolismo , Sítios de Ligação , Domínio Catalítico , Glicogênio Sintase Quinase 3 beta/metabolismo , Humanos , Simulação de Acoplamento Molecular , Conformação Proteica
16.
ACS Chem Neurosci ; 11(20): 3455-3463, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32997485

RESUMO

The cannabinoid (CB) receptors (CB1R and CB2R) represent a promising therapeutic target for several indications such as nociception and obesity. The ligands with nonselectivity can be traced to the high similarity in the binding sites of both cannabinoid receptors. Therefore, the need for selectivity, potency, and G-protein coupling bias has further complicated the design of desired compounds. The bias of currently studied cannabinoid agonists is seldom investigated, and agonists that do exhibit bias are typically nonselective. However, certain long-chain endocannabinoids represent a class of selective and potent CB1R agonists. The binding mode for this class of compounds has remained elusive, limiting the implementation of its binding features to currently studied agonists. Hence, in the present study, the binding poses for these long-chain cannabinoids, along with other interesting ligands, with the receptors have been determined, by using a combination of molecular docking and molecular dynamics (MD) simulations along with molecular mechanics-Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations. The binding poses for the long-chain cannabinoids implicate that a site surrounded by the transmembrane (TM)2, TM7, and extracellular loop (ECL)2 is vital for providing the long-chain ligands with the selectivity for CB1R, especially I267 of CB1R (corresponding to L182 of CB2R). Based on the obtained binding modes, the calculated relative binding free energies and selectivity are all in good agreement with the corresponding experimental data, suggesting that the determined binding poses are reasonable. The computational strategy used in this study may also prove fruitful in applications with other GPCRs or membrane-bound proteins.


Assuntos
Canabinoides , Agonistas de Receptores de Canabinoides , Ligantes , Simulação de Acoplamento Molecular , Ligação Proteica , Receptor CB1 de Canabinoide , Receptor CB2 de Canabinoide
17.
Bioorg Med Chem Lett ; 30(22): 127501, 2020 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-32882418

RESUMO

A series of N-benzyl-7-azaindolequinuclidinone (7-AIQD) analogs have been synthesized and evaluated for affinity toward CB1 and CB2 cannabinoid receptors and identified as a novel class of cannabinoid receptor ligands. Structure-activity relationship (SAR) studies indicate that 7-AIQD analogs are dual CB1/CB2 receptor ligands exhibiting high potency with somewhat greater selectivity towards CB2 receptors compared to the previously reported indolequinuclidinone (IQD) analogs. Initial binding assays showed that 7-AIQD analogs 8b, 8d, 8f, 8g and 9b (1 µM) produced more that 50% displacement of the CB1/CB2 non-selective agonist CP-55,940 (0.1 nM). Furthermore, Ki values determined from full competition binding curves showed that analogs 8a, 8b and 8g exhibit high affinity (110, 115 and 23.7 nM, respectively) and moderate selectivity (26.3, 6.1 and 9.2-fold, respectively) for CB2 relative to CB1 receptors. Functional studies examining modulation of G-protein activity demonstrated that 8a acts as a neutral antagonist at CB1 and CB2 receptors, while 8b exhibits inverse agonist activity at these receptors. Analogs 8f and 8g exhibit different intrinsic activities, depending on the receptor examined. Molecular docking and binding free energy calculations for the most active compounds (8a, 8b, 8f, and 8g) were performed to better understand the CB2 receptor-selective mechanism at the atomic level. Compound 8g exhibited the highest predicted binding affinity at both CB1 and CB2 receptors, and all four compounds were shown to have higher predicted binding affinities with the CB2 receptor compared to their corresponding binding affinities with the CB1 receptor. Further structural optimization of 7-AIQD analogs may lead to the identification of potential clinical agents.


Assuntos
Compostos Aza/farmacologia , Indóis/farmacologia , Quinuclidinas/farmacologia , Receptor CB1 de Canabinoide/antagonistas & inibidores , Receptor CB2 de Canabinoide/antagonistas & inibidores , Compostos Aza/síntese química , Compostos Aza/química , Relação Dose-Resposta a Droga , Humanos , Indóis/síntese química , Indóis/química , Ligantes , Estrutura Molecular , Quinuclidinas/síntese química , Quinuclidinas/química , Receptor CB1 de Canabinoide/metabolismo , Receptor CB2 de Canabinoide/metabolismo , Relação Estrutura-Atividade
18.
Molecules ; 25(16)2020 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-32784464

RESUMO

A series of novel hybrid 8-hydroxyquinoline-indole derivatives (7a-7e, 12a-12b and 18a-18h) were synthesized and screened for inhibitory activity against self-induced and metal-ion induced Aß1-42 aggregation as potential treatments for Alzheimer's disease (AD). In vitro studies identified the most inhibitory compounds against self-induced Aß1-42 aggregation as 18c, 18d and 18f (EC50 = 1.72, 1.48 and 1.08 µM, respectively) compared to the known anti-amyloid drug, clioquinol (1, EC50 = 9.95 µM). The fluorescence of thioflavin T-stained amyloid formed by Aß1-42 aggregation in the presence of Cu2+ or Zn2+ ions was also dramatically decreased by treatment with 18c, 18d and 18f. The most potent hybrid compound 18f afforded 82.3% and 88.3% inhibition, respectively, against Cu2+- induced and Zn2+- induced Aß1-42 aggregation. Compounds 18c, 18d and 18f were shown to be effective in reducing protein aggregation in HEK-tau and SY5Y-APPSw cells. Molecular docking studies with the most active compounds performed against Aß1-42 peptide indicated that the potent inhibitory activity of 18d and 18f were predicted to be due to hydrogen bonding interactions, π-π stacking interactions and π-cation interactions with Aß1-42, which may inhibit both self-aggregation as well as metal ion binding to Aß1-42 to favor the inhibition of Aß1-42 aggregation.


Assuntos
Peptídeos beta-Amiloides/química , Quelantes/química , Desenho de Fármacos , Indóis/química , Oxiquinolina/química , Oxiquinolina/farmacologia , Fragmentos de Peptídeos/química , Agregados Proteicos/efeitos dos fármacos , Técnicas de Química Sintética , Células HEK293 , Humanos , Modelos Moleculares , Oxiquinolina/síntese química , Estrutura Secundária de Proteína
19.
Polymers (Basel) ; 12(6)2020 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-32549325

RESUMO

Recent exploration of cellulose nanomaterials has resulted in the creation of Oxone®-Mediated TEMPO-Oxidized Cellulose Nanomaterials (OTO-CNMs). These materials, when incorporated into a polymer matrix, have properties showing increased flux, decreased membrane resistance, and improved clearance, making them an ideal material for dialysis. This study is the first to focus on the implementation of OTO-CNMs into hollow fiber membranes and a comparison of these membranes for ultrafiltration and dialysis. Ultrafiltration and dialysis were performed using bovine serum albumin (BSA), lysozyme, and urea to analyze various properties of each hollow fiber membrane type. The results presented in this study provide the first quantitative evaluation of the clearance and sieving characteristics of Oxone®-Mediated TEMPO-Oxidized Cellulose-Nanomaterial-doped cellulose triacetate mixed-matrix hemodialyzers. While the cellulose nanomaterials increased flux (10-30%) in ultrafiltration mode, this was offset by increased removal of albumin. However, in dialysis mode, these materials drastically increased the mass transfer of components (50-100%), which could lead to significantly lower dialysis times for patients. This change in the performance between the two different modes is most likely due to the increased porosity of the cellulose nanomaterials.

20.
Molecules ; 25(8)2020 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-32316421

RESUMO

The 2,2,6,6-tetramethylpiperidin-1-oxyl (TEMPO) oxidation of cellulose, when mediated with Oxone® (KHSO5), can be performed simply and under mild conditions. Furthermore, the products of the reaction can be isolated into two major components: Oxone®-mediated TEMPO-oxidized cellulose nanomaterials Form I and Form II (OTO-CNM Form I and Form II). This study focuses on the characterization of the properties of OTO-CNMs. Nanoparticle-sized cellulose fibers of 5 and 16 nm, respectively, were confirmed through electron microscopy. Infrared spectroscopy showed that the most carboxylation presented in Form II. Conductometric titration showed a two-fold increase in carboxylation from Form I (800 mmol/kg) to Form II (1600 mmol/kg). OTO-CNMs showed cellulose crystallinity in the range of 64-68% and crystallite sizes of 1.4-3.3 nm, as shown through XRD. OTO-CNMs show controlled variability in hydrophilicity with contact angles ranging from 16 to 32°, within or below the 26-47° reported in the literature for TEMPO-oxidized CNMs. Newly discovered OTO-CNM Form II shows enhanced hydrophilic properties as well as unique crystallinity and chemical functionalization in the field of bio-sourced material and nanocomposites.


Assuntos
Celulose Oxidada/química , Nanoestruturas/química , Piperidinas/química , Ácidos Sulfúricos/química , Densitometria , Interações Hidrofóbicas e Hidrofílicas , Nanoestruturas/ultraestrutura , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...